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INTRODUCTION 

Duplex DNA has the mechanical properties of a hyperelastic symmetric 
Each secondary structure has an unstressed shape, which is usually straight with a 
helical twist characteristic of the secondary structure involved. Because DNA is 
hyperelastic, a free energy density W is associated to deformations away from the 
unstressed conformation. These deformations are expressed in terms of K ( s ) ,  the 
curvature at position s along the molecule, and T ( s ) ,  the local deviation from 
the unstressed helicity measured in radians per unit length. Because DNA is mechani- 
cally symmetric, bending has no preferred direction and the hyperelastic energy 
density is a function of three variables3: W = W( K ,  T, s). 

In most analyses of DNA superhelical tertiary structure the molecule is regarded as 
linearly elastic, homogeneous, and mechanically symmetric with constant cross 
s e c t i ~ n , ~ , ~  so that W has the form 

w = $( A K ~ (  S )  + C T ~ (  s)) (1) 

Here A and C are the bending and torsional stiffnesses of the molecule, respectively, 
which have fixed values at  all positions s. In fact, this quadratic expression is only a 
lowest order approximation to what is probably a much more complex relationship. 
The elastic assumptions made in this paper encompass this linear case as well as many 
others. In particular, nonlinear elastic laws are included in which free energy relations 
of types other than the quadratic expression above occur. Also, the effective stiffnesses 
to twisting and bending are permitted to vary with position s. This is known to occur 
in DNA due to sequence effects and transitions between secondary structures!v6 The 
assumption of mechanical symmetry is probably quite accurate. This is because the 
shell of hydration, which surrounds the molecule in solution and participates in its 
motions, imparts an effectively mechanically symmetric cross section to it?,* 

When the molecule is deformed away from its unstressed shape, internal forces arise 
that are resolvable into a torque M(s) and a stress resultant N(s) acting a t  the center 
of each cross section? In order for the molecule to be in equilibrium, these internal 
stresses and torques must be in balance. This condition of equilibrium is expressed in 
the two equations" 

(Z)  + p ( s ) = O  
space 

and 

+ t ( s )  x N(s) + q(s) = 0 (:IspaCe 
Here p and q are the imposed force and torque per unit length, respectively, while t is 
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the local unit tangent vector at position s pointing in the direction of increasing s. All 
derivatives here are taken with respect to a fixed set of axes in space. These two 
equations give the necessary and sufficient conditions for mechanical equilibrium. They 
state that the distribution of internal stresses is in balance, so that neither local 
rotational or translational accelerations, nor dynamic deformations, occur. The imposi- 
tion of constraints limits the family of accessible conformations among which equi- 
libria are sought. But constraints do not alter the conditions expressed by eqs. (2a, b) 
that must be satisfied in order for a conformation to be at equilibrium. 

If there are no externally imposed forces or torques, then the equilibrium condition 
on the stress resultant implies that N(s) is a constant vector in the space coordinate 
system, 

while M(s) obeys 

+ t ( s ) X N = O  ( 1 s  pace 

These conditions for equilibrium may be expressed in terms of the analogous action 
S,3 which is given by 

where L is the length of the molecule. The elastic deformation strain free energy is K, 
the integral of the hyperelastic energy density W. The other integral is V, the 
analogous potential energy arising from the stress resultant N. The action S, as the 
difference between two energies, is itself an energy. Mechanical equilibria occur in 
conformations in which S is extremal, within the collection of all conformations 
consistent with the imposed constraints. Stable equilibria occur when the governing 
action S is minimized. 

Superhelical DNA is constrained by the constancy of its linking number, and usually 
also by smooth closure into a topologically circular molecule. In the absence of 
self-contacts or externally imposed forces, stable superhelical equilibria are the confor- 
mations of least action within the family of all (usually smoothly closed) conformations 
having a fixed value of the linking number? 

Some analyses of superhelical tertiary structure posit that equilibria occur in 
conformations that extremize the elastic deformation strain free energy K consistent 
with constraints, while the potential energy V is not ~onsidered."-'~ Because it is the 
extrema of the action that correctly determine equilibria, this is equivalent to im- 
plicitly assuming, not just that V = 0 in all configurations so that S = K overall, but 
also that the integrand N * t(s) of the analogous potential energy vanishes identically 
at all points in all accessible conformations. The reason for this local condition is that, 
for the structure as a whole to be in equilibrium, every piece of i t  must be in 
equilibrium. The same condition that governs equilibrium for the whole domain must 
also hold in every part of the domain. Thus, for equilibrium to be determined by 
extremals of the deformation strain energy K, dV = N t(s) ds must integrate to zero 
over every connected subset of the domain, which can happen only if N t(s) = 0. 
This can occur in either of two ways: Either N is perpendicular to the unit tangent 
vector everywhere in all accessible conformations, or N = 0. The former case requires 
that all conformations accessible to the molecule are planar, which does not occur in 
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problems of interest related to the tertiary structure of superhelical DNA. Hence the 
assumption that equilibria occur at  extremals of K requires that N = 0. In this 
communication we investigate the circumstances under which this assumption is 
correct. 

MECHANICAL EQUILIBRIA IN THE FORCE-FREE CASE 

The analysis of mechanical equilibria requires that a local body system of coordi- 
nates be associated to each position s on the axis of the rod. While in other 
circumstances it is appropriate to choose these to be the principal axes of the rod, in 
this case calculations are facilitated if the Frenet trihedron is chosen as the local 
coordinate ~ystem. '~. '~ These are the mutually perpendicular triad of unit vectors 
[Ys), n(s), b ( s ) ] ,  the unit tangent, normal, and binormal vectors of differential geome- 
try. The relationship between derivatives computed in the fixed space axes and those 
found using the local system associated to each position s is expressed by l6 

(2) = v + o x v  
space 

where V is any vector-valued function of s and the dot denotes differentiation with 
respect to s in the local body coordinate system. For the choice of the Frenet trihedron 
as the local system of axes, the vector o expressing the local rotation of the body 
system relative to the space system is the Darboux vector,15 which is 

o = T(  s)t( s )  + K (  s )b (  s) 

where T(  S) and K (  S) are the differential-geometric torsion and curvature at  position s, 
respectively. 

When N = 0 Eq. (3b), expressing the equilibrium condition on the torque, becomes 

so the torque vector M(s) is fixed in magnitude and direction in space. Using Eq. (5a), 
this equilibrium condition is expressed in terms of the local body coordinate system as 

M = M x o  ( 7) 

We decompose M into its components in the local coordinate system: 

M = m,t( S)  + m,n( s )  + mbb( S) (8) 

Then 

M x C O = K ( S ) m , t ( S )  + [T(S)mb - K ( S ) m , ] I l ( S )  - T ( s ) m , b ( s )  (9) 

Inserting this expression into Eq. (7), expressing the equilibrium condition on the 
torque in the force-free case and equating coefficients gives three equations: 

m, = u(s)m, 

mb = -T(s)m,, 
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The assumption of mechanical symmetry implies that the torque M points in a 
direction orthogonal to the normal vector3: 

M = v(s)t(s)  + P ( s ) b ( s )  (114 

I t  follows that 

Here y( s )  is the component of the torque that torsionally deforms the molecule, while 
B ( s )  is the part that bends it. Using these values, Eqs. (10a-c) become: 

B = O  + = O  Pd.1 = Y 4 s )  ( 12) 

If P = 0, then the only deformations are torsional and the rod remains straight. In this 
case, which is not available to a closed circular DNA molecule, the local system of axes 
must be reinterpreted as principal axes of the cross section. In all other cases the 
bending moment B is nonzero at all cross sections, so the curvature K ( S )  never 
vanishes. (In particular, the Frenet trihedron is well determined.) The equations in (12) 
above together imply that the ratio of the differential geometric torsion to the 
curvature satisfies 

T f S )  v 

The only space curves for which the ratio of torsion to curvature is a constant are 
generalized helices. These are curves for which the tangent vector t(s) makes a fixed 
angle with a particular axis in space?4 The tangent indicatrix of a generalized helix 
[i.e., the curve on the unit sphere described by the collection of tangent vectors t(s) 
when they are all translated to a common origin] lies entirely on a single circle of 
latitude about the fixed axis?' If the rod has homogeneous elastic properties and 
constant cross section, this curve will be a standard helix. If the angle that t(s) makes 
with the distinguished axis of a generalized helix is not ./2, then the curve cannot be 
~l&ed.'~ This is because i t  can penetrate any plane perpendicular to the distinguished 
axis in one direction only, so it can never turn around to close on itself. Conversely, if 
this angle is n/2, then the curve lies entirely within one plane perpendicular to the 
space axis. 

SUPERHELICAL EQUILIBRIA OF CLOSED CIRCULAR DNA 

If follows from the analysis presented above that the only equilibrium structures 
available to a closed circular molecule in the force-free case are planar, and hence have 
Wr = 0. Moreover, the differential-geometric torsion of a planar curve is identically 
zero, so from Eq. (13), y = 0. This means that the molecule also experisnces no 
deformations of twist. The relaxed conformation is the only equilibrium structure 
accessible to a closed circular molecule in which there is no stress resultant, N = 0. The 
imposition of superhelicity on a closed circular DNA molecule always induces a 
nonzero stress resultant N, which must be taken into account in the analysis of tertiary 
structure. The mechanical equilibria of closed circular, superhelically stressed DNA do 
not occur as extremals of the deformation strain energy K alone. 

The mechanical equilibrium conformations accessible to a superhelically constrained 
closed circular molecule of DNA in the absence of imposed forces and torques all have 
internal stress resultant N f 0 that is constant at every position s. One may choose 
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the  fixed space system of coordinates so that the origin coincides with the center of the 
cross section a t  s = 0, and the space Z-axis points in the direction of the stress 
resultant N. With this choice the analogous potential energy V is given by 

V = jLN * t( s) ds = lNljL cos 8( s)  ds 
0 0 

where 8 ( s )  is the Euler angle between the space Z-axis and the local tangent. The 
Z-coordinate of any position s on the molecular central axis is'" 

In a closed circular molecule Z(0)  = Z(  L ) ,  so that 

When this result is inserted into Eq. (14), we see that V = 0 in this case. For a closed 
circular DNA domain in which there are no imposed forces, the analogous action S 
equals the deformation strain free energy S = K in all equilibrium conformations. But 
it remains incorrect to conclude that these equilibria occur as extremals of K ,  as the 
following example from linear elasticity shows. 

When DNA is regarded as being homogeneous, symmetric, and linearly elastic with 
constant cross section, the following conservation law has been shown to hold at every 
position s at equilibrium8.": 

dK dV 
- + - = *( AK'( s )  + CT2( s ) )  + N * t( s )  = constant 
d s d s  

When a closed circular domain is not relaxed, its stress resultant N is nonzero. If its 
tertiary structure is not planar, then N * qs) will vary with s, so neither dK/ds nor 
dV/ds is constant. If equilibria were to occur at extremals of K ,  this conservation law 
would have the form dK/ds = constant. The equilibrium conformations predicted in 
this case clearly must have different curvatures K(S) and twist deformations 
T( s)-hence different tertiary structures-than when the stress resultant is included. 
This example shows that, even though the analogous potential energy V vanishes for 
closed circular molecules at  equilibrium, the stress resultant still has an important 
influence on conformation.8 The correct analysis of mechanical equilibrium tertiary 
structure extremizes the action S,  which must include the potential energy term V. 

INTERWOUND SUPERHELICAL EQUILIBRIA 

In the analysis presented in this section, DNA is regarded as having the mechanical 
properties of a homogeneous, symmetric, linearly elastic rod of constant cross section. 
The equilibrium conformations available to such a DNA domain constrained by the 
constancy of its linking number in the absence of imposed forces or torques have been 
determined previously? I t  was shown that these equilibria exhibit two orders of 
superhelicity?-'O* '' Th e tangent indicatrix oscillates approximately sinusoidally be- 
tween two circles of latitude. [Precisely, cos 19( s) oscillates between two extreme values 
u1 and u2 as the square of the Jacobi elliptic function Sn.] In circular domains, one of 
these orders reduces to the closure of the molecular central axis, so the equilibria 
approximate toroidal helices. The results of small-angle x-ray scattering experiments 
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indicate that this is the conformation in which superhelical circular DNA usually is 
found in ~olution.'~ 

If the molecule is allowed to assume conformations in which self-contacts occur, 
then another class of equilibria become possible. These are interwound structures, 
where the duplex winds helically on itself. This is the form of DNA superhelical 
tertiary structure usually seen in electron micrographs.20 There is also some x-ray 
evidence suggesting that the interwound form can occur in solution?1 

Interwound superhelical conformations are stabilized by forces of self-contact. This 
fact may be demonstrated informally with macroscopic analogs, or proven rigorously 
by showing that interwound structures do not satisfy the equations that govern 
equilibrium in the absence of imposed forces. To verify this conclusion, consider the 
tangent indicatrix of an interwound superhelix. As the ascending helical portion of this 
structure is traversed, the tangent indicatrix curve rotates in a circle on the unit sphere 
a number of times equal to the number of interwound turns present. When the loop 
joining the ascending and descending portions of the superhelix is encountered, the 
tangent indicatrix moves to the opposite hemisphere. As the descending part of the 
interwound structure is traversed, the tangent indicatrix rotates an equal number of 
times about the symmetrically placed circle, then it closes by returning to the upper 
hemisphere at  the lower loop region. The tangent indicatrix of a branched interwound 
structure is composed of several parts having this general description, one for each 
branch. In no interwound conformation does the tangent indicatrix oscillate periodi- 
cally between two circles of latitude according to the relationship 

which is the behavior that occurs at equilibrium in the absence of imposed forces? It 
follows that, in order for interwound conformations to be equilibria, they must have 
nonzero imposed force per unit length p(s) at the sites of self-contact. 

To analyze interwound superhelices, these contact forces must be included in the 
governing equilibrium Eqs. (2a, b). In particular, the internal stress resultant N( s) of 
an interwound conformation is not constant at all positions along the domain. Instead, 
i t  experiences discontinuous changes at point contacts, and continuous variations 
within more extensive regions of self-contact. N( s) is constant in those portions of the 
domain between points of self-contact, but its value will not be the same in every such 
region. Because N(s) is not constant throughout, the analogous potential energy V 
generally does not vanish in an interwound structure, even within a closed circular 
domain. Hence, interwound equilibria also do not occur as extremals of the deforma- 
tion strain energy K. Because forces of self-contact have not been included in the 
treatments of interwound superhelices that have been published to date,"-'3~22~23 a 
correct analysis of this type of equilibrium tertiary structure has yet to be performed. 
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